Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Ophthalmol ; 101(6): 687-695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36912796

RESUMO

PURPOSE: To assess the safety and performance of hyaluronic acid-based vitreous substitutes in phthitic eyes. METHODS: In this retrospective interventional study a total of 21 eyes from 21 patients with phthisis bulbi were treated at the Eye Clinic Sulzbach between August 2011 and June 2021. Patients who underwent a 23G pars plana vitrectomy received a vitreous substitute composed of (I) a non-crosslinked hyaluronic acid (Healon GV), (II) a crosslinked hyaluronic acid-based hydrogel (UVHA), or (III) silicone oil (SO-5000). Main outcome measures were the intraocular pressure (IOP), the visual acuity and the structural integrity of the retina and choroid assessed by optical coherence tomography. RESULTS: An increase in IOP ≥ 5 mmHg was achieved with SO-5000 in 5/8 eyes (6/10 interventions, 60.0%) for 36.4 ± 39.5 days, with Healon GV in 4/8 eyes (7/11 interventions, 63.6%) for 82.6 ± 92.5 days and with UVHA in 4/5 eyes (5/6 interventions, 83.3%) for 93.6 ± 92.5 days. Visual acuity increased in 5/21 eyes (23.8%), remained constant in 12/21 eyes (57.1%) and decreased in 4/21 eyes (19.0%). No enucleations were required during the mean follow-up time of 192 ± 182 days. The OCT images indicated the preservation of retinal structures, while choroidal folds were only diminished in UVHA eyes. CONCLUSIONS: Hyaluronic acid-based hydrogels are biocompatible vitreous substitutes in humans and can increase and stabilize IOP in patients with phthisis bulbi for about 3 months.


Assuntos
Ácido Hialurônico , Descolamento Retiniano , Humanos , Descolamento Retiniano/cirurgia , Estudos Retrospectivos , Retina , Vitrectomia/métodos , Cegueira
2.
Acta Ophthalmol ; 101(4): 422-432, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36457299

RESUMO

PURPOSE: Hydrogel-based vitreous substitutes have the potential to overcome the limitations of current clinically used endotamponades. With the goal of entering clinical trials, the present study aimed to (I) transfer the material synthesis of hyaluronic acid-based hydrogels into a routine, pharmaceutical-appropriate production and (II) evaluate the properties of the vitreous substitutes in terms of the current regulations for medical devices (MDR/ISO standards). METHODS: The multistep manufacturing process of the vitreous substitutes, including the modification of hyaluronic acid with glycidyl methacrylate, photocopolymerization with N-vinylpyrrolidone, and successive hydrogel purification, was developed under laboratory conditions, characterized using 1 H-NMR, FT-IR and UV/Vis spectroscopies and HPLC, and transferred towards a pharmaceutical production environment considering GMP standards. The optical and viscoelastic characteristics of the hyaluronic acid-based hydrogels were compared with those of extracted human vitreous and silicone oil. The effect of the hydrogels on the metabolic activity, proliferation and apoptosis of fibroblast (MRC-5, BJ, L929), retinal pigment epithelial (ARPE-19, hiPSC-derived RPE) and photoreceptor cells (661W) was studied as well as their mucosal tolerance via a HET-CAM assay. RESULTS: Hyaluronic acid-based hydrogels having a suitable purity, sterility, high transparency (>90%), appropriate refractive index (1.3365) and viscoelasticity (G' > G″) were prepared in a standardized manner under controlled process conditions. The metabolic activity, proliferation and apoptosis of various cell types as well as egg choroid were unaffected by the hyaluronic acid-based vitreous substitutes, demonstrating their biocompatibility. CONCLUSIONS: The present study demonstrates the successful transferability of the crucial synthesis steps of hyaluronic acid-based hydrogels into a routine, GMP-compliant production process while achieving the optical and viscoelastic properties, biocompatibility and purity required for their clinical use as vitreous substitutes.


Assuntos
Ácido Hialurônico , Corpo Vítreo , Humanos , Corpo Vítreo/cirurgia , Ácido Hialurônico/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis/química , Hidrogéis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...